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In 2016, I wrote a blog post entitled “Building a Mature Analytics 
Workflow.” In it, I compared analytics to software engineering and 
stated my position that we should be bringing software engineering 
best practices into our work as data practitioners (version control, 
CI/CD, testing, documentation, etc.). Before that, this point of view 
was counterintuitive and not widely accepted.

Fast forward to today, and that post helped launch a community 
and a product, and many of the assertions it made have been 
accepted as best practice in the data industry. However, nearly a 
decade later, it is clear to me that the original post is in need of  
an update. 

The fact is that we—the entire 
data community—have not rolled 
out these ideas to all layers of the 
analytics stack, and this leads 
to bad outcomes: impaired trust 
in data, slow decision-making 
velocity, low quality decisions. 
We have pushed back this tide 
within the narrow domain of data 
transformation; it is time to apply 
these lessons more broadly across 
the entire analytics workflow.

A letter from our Founder & CEO
Why? First, we now have the 
collective experience of tens of 
thousands of companies applying 
these ideas. We can observe from 
dbt product instrumentation data 
that a large majority of companies 
that transition to the cloud adopt 
at least some elements of a mature 
analytics workflow—particularly 
related to data transformations. 
But what about the other layers of 
the analytics stack? 

We need to collectively 
acknowledge that we are not 
done, that there is further to go 
on this journey.

The goal of this paper is to 
outline the workflow principles 
that I believe are the solution to 
this problem. These principles 
apply to all analytical jobs-to-be-
done; data maturity is an end-to-
end effort.

We have achieved so much 
together over the past decade. I 
look forward to another decade 
of progress.

— Tristan Handy,  
September 2024

At your company, do you 
believe that notebooks and 
dashboards are well-tested 
and have provable SLAs? 

Here is what I mean: 

The answer to these questions, for almost 
every company out there, is “no.”

Do your ingestion 
pipelines have clear 
versioning? Do they have 
processes to roll back 
schema changes? Do 
they support multiple 
environments? 

Can data consumers 
request support and 
declare incidents 
directly from within 
the analytical systems 
they interact with? 
Do you have on-call 
rotations? Do you have 
a well-defined incident 
management process?
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Intro: A mature  
analytics workflow
Analytics is the practice of analyzing data to make truth claims.

These truth claims can be:
 
       • descriptive (“We had 200 orders yesterday”).
       • causal (“Revenue is down because our ad   
          inventory is low during the summer”).
       • predictive (“We estimate that revenue next   
          quarter will come in ahead of plan”).
       • prescriptive (“Use the following ad copy to   
          this segment to maximize click through rate”).

If you are using data to make truth claims, you 
are practicing analytics. To practice analytics 
well, you need two things: 

       • An analytical system (tools and technology)
       • An analytical workflow (process)

These two things work together to create your analytics practice.
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Some analytical practices are better than others. 
And some are simply different: they make different 
tradeoffs.

For example: velocity and governance are 
commonly traded off against one another. 
Spreadsheet-based ad-hoc analysis can be a 
fast way to get to an answer, but its governance 
characteristics are typically low.

We believe that teams are capable of practicing 
analytics in a way that hits a far higher mark on 
these dimensions simultaneously. This requires 
both better analytical systems and more mature 
analytical workflows. Because the reality is that 
despite technological and process advancements 
in the past decade, it is still quite uncommon to 
see mature analytics principles applied to all areas 
of analytics—from data ingestion to orchestration, 
observability, discovery, and analysis. As a result, 
analytics in practice still suffers from many of the 
same problems it did a decade ago: low velocity, 
inaccurate results, impaired trust…all without 
proper cost control. Progress has been made, but 
there is more we can do. 

Intro: A mature analytics workflow (Continued)

This paper focuses on the 
workflows part of the equation. 
In it, we propose a specific 
workflow designed to accelerate 
data velocity while improving 
data maturity: the Analytics 
Development Lifecycle (ADLC). 
We believe that implementing the 
ADLC is the best path to building 
a mature analytics practice within 
an organization of any size.
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Requirements of a mature
analytics workflow
A mature analytics workflow has the following characteristics. 

Data scale 
How much data can be processed? A mature 
workflow requires analytical systems that can 
scale up and down elastically, abstracting away 
the complexity involved in processing data sets of 
any size.

Collaboration scale
How many users can effectively collaborate 
together? A mature workflow is suitable for a 
single user and scales to arbitrarily many. As 
additional users are added to the process, design 
considerations may change, but the fundamental 
workflow does not.

Accessibility
How many types of users are capable of using 
this system? A mature workflow brings different 
personas together to collaborate as peers.

Velocity
How quickly can a user conduct a given unit 
of analysis? A mature workflow does require 
participants to undertake some overhead relative 
to simple ad-hoc work, but both minimizes this 
overhead and injects velocity as requirements 
scale beyond the basic.

Correctness
What is the likelihood that a given output 
produced is correct? A mature workflow not 
only produces correct results, it also contains 
mechanisms to automatically validate correctness.

Auditability
What changes have occurred to produce a given 
result? A mature workflow produces artifacts with 
changes tracked and outputs reproducible at any 
point in time. 

Governance
Can we assert that the right people are using 
data in accordance with all applicable rules 
and regulations? A mature workflow integrates 
governance directly and from the outset. 

Criticality
Can the business rely on the results of this 
workflow? A mature workflow produces artifacts 
that can seamlessly scale from experimental to 
mission-critical without needing to be re-built.

Reliability
What is the likelihood that the system will operate 
without failure for a specified time period? A 
mature workflow requires systems that are 
resilient to failure and provide uptime SLAs that 
allow the business to depend on them.

Resilience
Do errors result in massive or minimal business 
impact? Errors are inevitable in all complex 
systems, and a mature workflow must anticipate 
them, minimize their impact, and have 
mechanisms to quickly remediate them.
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Stakeholders of the ADLC
There are three primary personas of individuals
that participate in the ADLC: 

The Engineer
The engineer creates reusable 
data assets: pipelines, models, 
metrics, etc. The engineer is 
primarily focused on creating 
data assets that others will use 
to create business value.

The Analyst
The analyst performs analysis 
that drives decision-making. 
The analyst does not make 
decisions; their role is 
quantitative investigation, 
and they present analysis and/
or recommendations to the 
decision maker.

The Decision-Maker
The decision-maker is responsible 
for taking quantitative outputs 
and translating them into action 
for the business. This does not 
imply seniority: decision-makers 
include everyone from a campaign 
manager optimizing segmentation 
to a CEO directing the resources of 
an entire company.

Taken together, these three 
personas cover every individual 
at an organization who interacts 
with data for the purpose of 
analytics.

These personas are not job titles. 
The ADLC does not require any 
particular mapping between 
personas and job titles; different 
organizations can decide on 
appropriate job descriptions 
based on their own unique 
organizational contexts. For 
example, a single individual 
could act as each of these 
personas at a small startup, while 
at large companies there may be 
many job titles that fall along the 
above continuum.

What is important to the ADLC is how these personas work 
together. Specifically, the ADLC requires two things. 

01 These personas must all collaborate together using a 
common workflow: the ADLC. The ADLC is not just for 
engineers and not just for analysts. It is a multi-persona 
workflow wherein every knowledge worker in an organization 
collaborates together.

These personas must all collaborate together within tooling 
that empowers each of them to perform their assigned roles 
according to the ADLC. This might seem obvious given the 
above point, but in practice this is a major gap in the tooling 
ecosystem today. While tooling for the engineer has made 
significant progress over the past decade along its workflow 
maturity, tooling for the analyst and the decision-maker 
has largely not kept pace. We see this as one of the biggest 
barriers to full adoption of the ADLC today.

02
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The above three personas are 
like hats data practitioners put 
on and take off, not badges 
we wear all day every day. 
We have our primary hat, the 
one we like wearing best. But 
over the course of the day, as 
we get pulled into solving real 
problems, we need the flexibility 
to put on different hats.

The most effective data 
practitioners can wear all three 
hats. And the best data tooling 
enables as many people as 
possible to wear all three hats. 
Even with great tooling, you will 
still have a hat you prefer. But 
the ability to wear all of them as 
the situation demands allows 
you to complete a single end-
to-end task yourself, without 
getting stuck behind someone 
else’s queue.

The best organizations 
encourage talented people to 
flex between these different 
personas. They allow them to 
take an idea and get curious 
about it, to explore it without 
needing to file a ticket or wait for 
anyone else.

This, in turn, requires tooling 
that prioritizes both accessibility 
and workflow maturity at the 
same time. Rather than saying 
“stay in your lane,” we should be 
saying “here are tools that allow 
you to get your job done in a 
mature way.”

Hats, not badges
One of the failure modes 
of an analytical practice is 
excessive segregation by 
persona. Because the ADLC is 
fundamentally an integrated, 
iterative process, segregating 
tasks too strongly causes 
friction and therefore slowness.

For instance, if an analyst has to go to an engineer to source new data, 
that engineer will likely put a ticket in their queue, then prioritize it, 
then eventually get to it. This can inject weeks into a process that could 
otherwise take minutes. 

While the ADLC recognizes these three personas—the engineer, the 
analyst, and the decision-maker—it also encourages us not to see 
these personas as static. 

For example:
Analysts get pulled 
into engineering 
work to unblock 
themselves and  
move faster.

Decision-makers get 
pulled into analytical 
work to drill into any 
analysis provided 
and ask follow-up 
questions.

Many jobs are analyst 
/ decision-maker 
hybrids, where the 
same person is 
both analyzing and 
decisioning on data.
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The ADLC Model
We propose a simple, straightforward model for the Analytics  
Development Lifecycle (ADLC). This model governs changes to,  
maintenance of, and use of any analytical system.

The ADLC is heavily informed by a single guiding principle: 
analytical systems are software systems. Therefore, in developing 
large-scale, mission-critical data systems, many of the best lessons 
that can be learned come directly from software engineering. 
As such, the ADLC borrows very intentionally from the software 
development lifecycle (SDLC). There is no one single canonical 
version of the SDLC, but here is a common visual depiction.

Next, we will examine each of 
these phases. Before diving in, 
it is important to set realistic 
expectations. There have been 
many books written about each 
one of these stages in the SDLC. 
Entire books just about writing 
code, just about operating 
production systems, etc. This 
paper will not even come close 
to a partial treatment on any 
of these topics; our goal here 
is to outline the framework as 
a jumping off point for further 
work, writing, and community 
contribution.

As in the SDLC, the relationship between these 
stages is a loop. Here is how the stages logically 
relate to one another:

Since its inception, the SDLC has 
been broadly adopted globally 
and across industries—it is widely 
understood and battle-tested. 
As such, it is a good framework 
from which to draw upon. In 
the following sections, we will 
propose a model for the ADLC that 
borrows heavily from the SDLC.

The ADLC is not relevant only to a single part of an analytical system: 
it is relevant to the entire system, from ingesting data to transforming 
it to analyzing it to building applications on top of it. This paper takes 
care to describe the work being done as creating analytical ‘assets’ or 
‘artifacts’—these can be pipelines, models, dashboards, notebooks, or 
any other object that creates, moves, processes, or analyzes data.

In this model, there are eight discrete stages:
Plan, Develop, Test, Deploy, Operate, Observe, Discover, Analyze
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Plan
Analytical systems collect data from and build 
models of the real world, and the real world 
changes constantly. As a result, changes to 
analytical systems are constant. The Plan phase is 
the beginning of the process of making changes to 
an analytical system.

There is no one-size-fits-all approach to the Plan 
phase. Changes to an analytical system come from 
many different places. New business requirements. 
Issues identified in production. Refactoring. Some 
changes may be tiny and some may be huge.

The larger the change, the more critical it is to run 
through a thorough planning process.

Best practices include:
Create and validate the business case
All changes to an analytical system should be 
based on a solid business case, and often clarifying, 
documenting, and aligning on that business case 
is both the most important step in the process and 
yet the most often skipped. Have a clear process by 
which changes above a certain threshold must go 
through before getting worked on.

Create your implementation plan
Determine what shared functionality can be 
referenced or extended, whether from the 
community or from others in your org. Extending 
existing assets can require more up-front effort 
(because of the testing and coordination required) 
but over the long term, maintaining multiple similar 
copies of assets creates a huge drag on a system. 
Keep your code DRY.

Get stakeholder feedback
Check back in with the stakeholders identified when 
building the business case to get their comments 
and buy-in for your proposed approach. Missing this 
feedback cycle can lead to a lack of alignment and 
wasted time and effort.

Create a test plan
Before writing a line of code, answer how you will 
assert that the code you wrote is functioning as 
intended. What use cases does it need to handle? 
What problems does it need to be robust to?

Anticipate downstream impacts
If changing an existing asset, identify the 
downstream consumers of that asset (other assets 
and other humans). Develop a plan for how to 
make changes in a non-disruptive way, including 
testing downstream assets. Create a deprecation 
plan for older functionality being replaced that will 
introduce breaking changes.

Plan for maintenance
Historically, most analytical assets were temporary, 
throwaway. A single spreadsheet attached to an 
email, ready to be replaced by a new copy next 
week, disconnected from any larger system. This is 
not how mature analytical systems are built today. 
Today’s analytical systems are interconnected and 
long-lived, just like software systems.

And as in software systems, most of the work 
involved is in the maintenance phase, not in the 
initial development phase. So, prior to starting the 
work, make sure to plan for maintenance.

Who should be maintaining the changes you are 
making over the long term? Are you changing an asset 
that you built originally? That someone else built? 
That is owned by your team or another team? Etc.

Determine access levels
What teams and individuals should have access to 
the work? Is there personal identifiable information 
(PII) or sensitive personal information (SPI) in the 
data that you are working with and how does it 
need to be handled?

Implement larger changes in small pieces
Divide up larger work into smaller units that can 
be taken through the development process and 
merged independently. The ADLC is iterative: faster, 
smaller iteration cycles tend to produce healthier 
analytical practices.
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Develop
The Develop phase is what gets most of the attention 
in the ADLC, but it is actually overrepresented 
relative to the amount of time spent in this phase. In 
practice, with a high-quality Plan phase, the Develop 
phase should move fairly quickly for an experienced 
practitioner. It is focused on translating the knowledge 
you gathered in the Plan phase into code.

Best practices include:
Code first
Whatever type of analytical asset is being built, and 
whatever persona is building it, the tool you use should 
read and write human-readable code. Code doesn’t 
have to be the user interface, but it does have to be the 
underlying representation of all business logic in order 
to live up to the ADLC. This is for the following reasons:

       • Code can be edited by multiple tools, used by    
         multiple personas.
       • Code can be checked into source control systems 
          that enable mature collaboration across  
          thousands of co-contributors.
       • Code can go through the CI/CD process.
       • Code, as language, is composable and therefore 
         maximally expressive.

Choose & customize your own development workflow
There is no ‘correct’ development workflow or 
toolset. You can use emacs or vim, CLI or IDE, a 
graphical user interface or an AI copilot, and you can 
switch between these different modalities as the 
situation demands. You are the best judge of how 
you are maximally effective. What is critical is that 
your analytical system supports contributing code in 
multiple modalities as suitable for multiple personas.

Highly productive developers not only choose the 
tools that best suit them, they customize them, 
sometimes extensively. This includes everything from 
hotkeys to color schemes to macros and plugins. 
The difference between developer productivity 
within a ‘vanilla’ development environment and a 
development environment that has been tuned to 
your specific workflow can be dramatic.

Adhere to a style guide
Many choices made when writing code are stylistic: 
capitalization, indentation, etc. While there often is no 
‘correct’ answer on these topics, it is important that 
they are done consistently across a code base. Create 
a style guide to define this consistency and then 
invest the time to follow it—doing so will improve the 
productivity of every single developer that interacts 
with your code base.

Prioritize functionality over performance
Your initial job is to write code that meets your 
functional requirements. Once you do that, you can 
prioritize performance as much as is appropriate.

Invest in code quality
Most of the time spent in any given analytical 
system is on its maintenance, not on its original 
development. Set up yourself and others for success: 
write good code. This does not just mean following 
the style guide. It means: 

       • writing code that is idiomatic to the language 
         you are using
       • applying common design patterns
       • using descriptive names
       • prioritizing readability
       • writing in-line comments and supporting        
         documentation
       • keeping code DRY
       • designing for reusability
       • …and many other best practices

Get code reviewed
No code should get merged into production without a 
second set of eyes on it. Invest in code review in your 
organization and make sure the process is rigorous 
and consistent. Make sure peers are incentivized 
and organized in a way that enables them to review 
others’ work.

Use standards to avoid lock-in
Writing code in proprietary languages risks vendor 
lock-in. Using open languages (such as SQL and 
Python) and frameworks (such as Apache Spark and 
dbt) that are open is highly preferable. Code bases 
live for a long time—often far longer than the lifetime 
of any one single product or vendor.
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Test
The Test phase is an absolutely 
essential part of the ADLC. This is 
one of the areas in which imma-
ture analytics workflows often fall 
furthest from the mark.
We believe that no production analytical artifact 
should exist without tests. In practice, the data 
pipeline space has made significant progress 
in testing over the past decade, but it is still 
quite uncommon to see well-tested notebooks 
and dashboards. This represents a significant 
opportunity for increased maturity in the current 
ecosystem.

The Test phase falls immediately after the Develop 
phase and refers to testing changes before they 
are merged into production. Data is also tested on 
an ongoing basis in the production environment, 
but the ADLC considers this the Observe phase. 
Of course, implementing good tests when writing 
code typically forms the backbone of effective 
observability.

The Test phase spans two distinct workflows:

There are three types of tests that should be 
implemented:

Unit tests test only the logic being implemented, 
not the underlying data, and not the system as a 
whole (“Will this model do what I expect it to do?”)

Data tests test the logic being implemented plus 
the underlying data (“Does the data conform to my 
expectations?”)

Integration tests test the system as a whole (“Do 
my changes break any other parts of the system?”)

As in software engineering, writing tests is not hard 
(with appropriate tooling), but it can be painstaking. 
But a well-tested codebase significantly reduces 
the maintenance burden of an analytical system as 
errors can be quickly traced to their source. Testing 
is as much about culture, shared expectations, and 
accountability as it is about tooling or technique. 
The desire to skip writing good tests and move 
on to the next task is always present and must be 
balanced via accountability mechanisms like code 
reviews, linting, and test coverage metrics.

In software engineering, there are advocates for 
different testing methodologies, such as test-
driven development. The ADLC does not specify 
a particular testing methodology, only that no 
production analytical asset should exist without 
tests.

It is common and appropriate for developers to 
focus on testing their own code during development 
and then running the entire test suite during CI.

01
02

Iteratively, interspersed with development. 

Automatically, as a part of the pull request 
process. This is known as continuous 
integration (CI). Changes should never get 
merged into production without CI. 
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Deploy
The Deploy phase is where code 
is migrated from development 
to production. This can be a 
fairly straightforward single hop, 
or it can be more complicated 
depending on the needs of the 
system. All deployment processes 
should have a set of common 
characteristics:
Deployment is triggered based on a merge in 
source control. 
As source control stores the state of the repository, 
branches represent the state of environments. Be-
fore deploying code to any environment, that code 
must be merged to the appropriate branch. The 
deployment then is made directly from that branch.

Deployment is automated. 
There are no human steps required, beyond the act 
of merging code to a new branch, to deploy changes 
to a new environment. Sometimes this is straight-
forward; sometimes this requires work to create 
migration tooling to enable.

Deployment does not cause user-facing 
downtime. 
Mature analytical systems are constructed in a way 
to not impact users during deployments. 

Rollbacks are automated.
Rollbacks are not only possible, but are automated. 
Deployments will inevitably surface errors despite 
robust testing, and mature analytical systems need 
to plan for this outcome by having a rollback strate-
gy. The best rollback strategy includes smoke tests 
and automated rollbacks.

Developers choose the size of the change. 
Developers can choose to deploy a one-line change 
or a massive refactor to the entire system. The ana-
lytical system must not constrain the way in which 
they structure their patches.



The Analytics Development Life Cycle (ADLC) 13

Operate & Observe
Every analytical system has a production environ-
ment, and every organization has certain require-
ments for its production analytical environment: 
uptime, latency, throughput, correctness, etc. In 
the Operate and Observe phase we are not making 
changes to the system; having deployed and validat-
ed changes in the prior phase, we are now operating 
it in steady state and observing its characteristics to 
validate that it is conforming to expectations.

Best practices include:
Always-on
In the past, analytical systems were frequently un-
available for significant chunks of the day as new data 
was loaded or jobs were processed. This is no longer 
acceptable—analytical systems’ production environ-
ments should be assumed to be available 24x7x365, 
with modest windows for planned maintenance.

Tolerate and recover from failure
Your analytical system, with its thousands of models 
and dashboards and notebooks and sources, each 
containing thousands to billions of rows, will never 
be without errors. The goal is to be robust to these 
errors, not prevent them entirely. Build analytical 
assets that can recover from failure quickly and with 
minimal manual intervention.

Catch errors before customers do
Given that any mature analytical system will always 
contain errors, two of the most important metrics 
to measure are time to detect an error and time to 
resolve an error. The goal of error detection and 
remediation is to identify and resolve errors before 
your customers see them. 

This bar is very rarely hit inside of organizations 
today. Doing so requires mature processes around 
incident identification, triaging, and resolution, high 
quality instrumentation, clear component owner-
ship, and around-the-clock on-call rotations.

Test in production
From increment.com: “Once you deploy, you aren’t 
testing code anymore, you’re testing systems—com-
plex systems made up of users, code, environment, 
infrastructure, and a point in time. These systems 
have unpredictable interactions, lack any sane 
ordering, and develop emergent properties which 
perpetually and eternally defy your ability to deter-
ministically test.”

Said another way, most of the bugs you find are not 
“errors,” they are a mismatch between your busi-
ness logic and the real world. You can never fully 
anticipate the real world in your test environment, 
so you inevitably need to test in prod. This requires 
both excellent instrumentation and tooling that 
allows you to explore this instrumentation data in 
real-time.

Choose your own metrics, and then measure 
them religiously
There are many metrics to choose from in the liter-
ature on observability: availability, uptime, latency, 
throughput, etc. These metrics are all in tension 
with one another, and there is no universal answer 
to how these tradeoffs should be managed. Every 
organization needs to understand these metrics, 
set their relative priorities, and set goals around the 
ones that matter. Missing those goals should gener-
ate action.

Don’t overshoot
Every additional 9 on your SLAs costs an order of 
magnitude of additional effort/resources to deliv-
er. Assess the real business value of your system’s 
characteristics and aim to deliver what is actually 
required. 
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Discover & Analyze
The Discover and Analyze phase includes two 
distinct but intertwined user flows: discovery of 
existing data artifacts (data sets, dashboards, 
metrics, etc.) and using those data assets to answer 
questions. This phase is where business value is 
ultimately created. Reports and dashboards are 
created and viewed. Exploratory data analysis 
is conducted. Hypotheses are tested. Causal 
relationships are investigated. Predictions are 
made.

We find that this phase of the  
ADLC is, in practice, often relatively 
immature today. 
Every analytical question starts as research. An 
analyst sets out with a question about the business 
and looks for data to bring to bear on it. The analyst 
finds some data, hacks together some code or 
scripts or whatever to do some sanity checks, and 
eventually starts to be convinced that there’s signal 
in the data.

At that point, the analyst gradually starts to flip 
from a mindset of “I need to convince myself” to “I 
need to convince others.” At this point, the analyst 
anticipates a bunch of follow-on questions that 
might disconfirm their earlier conclusions and then 
proactively answers those.

Assuming their initial conclusion stands up to 
this effort at disconfirmation, they eventually 
switch from “I need to convince others” to “I need 
to memorialize this insight.” At this point, they 
consolidate all the analytical artifacts that they 
have built to get them to this point, clean them, 
document them, and ship them. At that point, those 
become long-lived artifacts of the analytical system 
of an organization.

This, then, is the core tension in  
the Discover and Analyze phase:

the same set of tools that 
promotes experimentation 
and exploration must then 
also support maturity and 
productionization.
In practice, most tooling in the presentation layer 
does not enable this, and as a result this layer of the 
analytical system often completely skips the ADLC. 
This results in final products (reports, dashboards, 
notebooks, etc.) that are low-maturity, even if they 
are built on top of mature datasets. 

Errors can get introduced at any layer of the 
analytical system, and the presentation layer is 
no exception. Presentation layer artifacts must 
go through the full ADLC before they become 
load-bearing in an organization. The process of 
productionizing a dashboard should be thought 
of as no less critical than, and fundamentally no 
different than productionizing a data pipeline.

This is why the ADLC is a loop. As the analyst moves 
from exploratory data analysis to memorializing 
an insight for a wider audience, they shift from the 
Discover and Analyze phase to the Plan and Develop 
phase, and thus through another iteration of the 
entire process.
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Requirements of the 
Discover & Analyze Phase
Beyond the above, the ADLC does not believe 
that there is a ‘right’ or a ‘wrong’ way to conduct 
exploratory data analysis. Rather, it specifies a set 
of requirements that all users should have of their 
analytical systems in the Discover and Analyze phase:

Users should be able to discover the artifacts 
from a mature analytical system directly, 
through a single search bar, without having 
to go through any intermediary gatekeepers.

Users should always be able to operate on 
data where they find it, without passing it 
from person to person in informal networks 
or ever downloading it locally.

Users should be able to leave feedback on any 
element of a mature analytical system. This 
feedback should both lead to better discovery 
as well as fed back into the Plan phase.

Users should be able to straightforwardly 
request the access that they need from a 
mature analytical system to get their jobs done. 

Users should be able to delegate their own 
access to a mature analytical system to their 
chosen tools and agents.

Users should be able to straightforwardly 
validate the correctness and timeliness  
of data from a mature analytical system.

Users should be able to straightforwardly 
investigate the provenance of any data 
element in a mature analytical system.

Users should be able to view a history of all 
state changes to a mature analytical system.

Users should be able to choose the 
environment of a mature analytical system 
they interact with: dev, staging, prod, etc.

Finally, users should be able to ignore the 
implementation details of a mature analytical 
system. The system should just work without 
these users needing to know all of the underlying 
technical details of how it works.
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Our goal in publishing this paper is to create 
a consistent, shared framework for a mature 
analytics workflow: the ADLC.

Many parts of this framework can be implemented 
today. Some require better tooling to effectively 
implement  them. As such, the effort of building 
towards a mature analytics practice requires the 
entire industry—data practitioners and technology 
vendors—working together towards a shared vision 
of the future.

This process will not play out overnight. Software 
engineering has only reached its current state of 
relative maturity after many decades of progress. It 
will take just as long in data. 

As an industry, we are immature in so many ways, 
and this paper only attempts to lay out, in the 
broadest of strokes, the path towards a solution. 
What is required now is to collectively roll up our 
sleeves and push the conversation forward in every 
single arena.

We look forward to doing that 
work right alongside you.

Conclusion
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ADLC is the new playbook for data.  
Learn more about analytics engineering best  

practices at getdbt.com/blog


