
The Analytics
Development
Lifecycle (ADLC)

The Analytics Development Life Cycle (ADLC) 01

In 2016, I wrote a blog post entitled “Building a Mature Analytics
Workflow.” In it, I compared analytics to software engineering and
stated my position that we should be bringing software engineering
best practices into our work as data practitioners (version control,
CI/CD, testing, documentation, etc.). Before that, this point of view
was counterintuitive and not widely accepted.

Fast forward to today, and that post helped launch a community
and a product, and many of the assertions it made have been
accepted as best practice in the data industry. However, nearly a
decade later, it is clear to me that the original post is in need of
an update.

The fact is that we—the entire
data community—have not rolled
out these ideas to all layers of the
analytics stack, and this leads
to bad outcomes: impaired trust
in data, slow decision-making
velocity, low quality decisions.
We have pushed back this tide
within the narrow domain of data
transformation; it is time to apply
these lessons more broadly across
the entire analytics workflow.

A letter from our Founder & CEO
Why? First, we now have the
collective experience of tens of
thousands of companies applying
these ideas. We can observe from
dbt product instrumentation data
that a large majority of companies
that transition to the cloud adopt
at least some elements of a mature
analytics workflow—particularly
related to data transformations.
But what about the other layers of
the analytics stack?

We need to collectively
acknowledge that we are not
done, that there is further to go
on this journey.

The goal of this paper is to
outline the workflow principles
that I believe are the solution to
this problem. These principles
apply to all analytical jobs-to-be-
done; data maturity is an end-to-
end effort.

We have achieved so much
together over the past decade. I
look forward to another decade
of progress.

— Tristan Handy,
September 2024

At your company, do you
believe that notebooks and
dashboards are well-tested
and have provable SLAs?

Here is what I mean:

The answer to these questions, for almost
every company out there, is “no.”

Do your ingestion
pipelines have clear
versioning? Do they have
processes to roll back
schema changes? Do
they support multiple
environments?

Can data consumers
request support and
declare incidents
directly from within
the analytical systems
they interact with?
Do you have on-call
rotations? Do you have
a well-defined incident
management process?

The Analytics Development Life Cycle (ADLC)

A letter from our Founder & CEO	

Table of Contents	

Intro: A mature analytics
workflow

Requirements of a mature
analytics workflow

Stakeholders of the ADLC	

Hats, not badges	

Table of Contents

02

The ADLC Model

Plan

Develop

Test

Deploy	

Operate and Observe

Discover and Analyze

Requirements of the Discover
and Analyze Phase

Conclusion

01

02

03

05

06

07

08

09

10

11

12

13

14

15

16

The Analytics Development Life Cycle (ADLC) 03

Intro: A mature
analytics workflow
Analytics is the practice of analyzing data to make truth claims.

These truth claims can be:

 • descriptive (“We had 200 orders yesterday”).
 • causal (“Revenue is down because our ad 		
 inventory is low during the summer”).
 • predictive (“We estimate that revenue next 		
 quarter will come in ahead of plan”).
 • prescriptive (“Use the following ad copy to 		
 this segment to maximize click through rate”).

If you are using data to make truth claims, you
are practicing analytics. To practice analytics
well, you need two things:

 • An analytical system (tools and technology)
 • An analytical workflow (process)

These two things work together to create your analytics practice.

The Analytics Development Life Cycle (ADLC) 04

Some analytical practices are better than others.
And some are simply different: they make different
tradeoffs.

For example: velocity and governance are
commonly traded off against one another.
Spreadsheet-based ad-hoc analysis can be a
fast way to get to an answer, but its governance
characteristics are typically low.

We believe that teams are capable of practicing
analytics in a way that hits a far higher mark on
these dimensions simultaneously. This requires
both better analytical systems and more mature
analytical workflows. Because the reality is that
despite technological and process advancements
in the past decade, it is still quite uncommon to
see mature analytics principles applied to all areas
of analytics—from data ingestion to orchestration,
observability, discovery, and analysis. As a result,
analytics in practice still suffers from many of the
same problems it did a decade ago: low velocity,
inaccurate results, impaired trust…all without
proper cost control. Progress has been made, but
there is more we can do.

Intro: A mature analytics workflow (Continued)

This paper focuses on the
workflows part of the equation.
In it, we propose a specific
workflow designed to accelerate
data velocity while improving
data maturity: the Analytics
Development Lifecycle (ADLC).
We believe that implementing the
ADLC is the best path to building
a mature analytics practice within
an organization of any size.

The Analytics Development Life Cycle (ADLC) 05

Requirements of a mature
analytics workflow
A mature analytics workflow has the following characteristics.

Data scale
How much data can be processed? A mature
workflow requires analytical systems that can
scale up and down elastically, abstracting away
the complexity involved in processing data sets of
any size.

Collaboration scale
How many users can effectively collaborate
together? A mature workflow is suitable for a
single user and scales to arbitrarily many. As
additional users are added to the process, design
considerations may change, but the fundamental
workflow does not.

Accessibility
How many types of users are capable of using
this system? A mature workflow brings different
personas together to collaborate as peers.

Velocity
How quickly can a user conduct a given unit
of analysis? A mature workflow does require
participants to undertake some overhead relative
to simple ad-hoc work, but both minimizes this
overhead and injects velocity as requirements
scale beyond the basic.

Correctness
What is the likelihood that a given output
produced is correct? A mature workflow not
only produces correct results, it also contains
mechanisms to automatically validate correctness.

Auditability
What changes have occurred to produce a given
result? A mature workflow produces artifacts with
changes tracked and outputs reproducible at any
point in time.

Governance
Can we assert that the right people are using
data in accordance with all applicable rules
and regulations? A mature workflow integrates
governance directly and from the outset.

Criticality
Can the business rely on the results of this
workflow? A mature workflow produces artifacts
that can seamlessly scale from experimental to
mission-critical without needing to be re-built.

Reliability
What is the likelihood that the system will operate
without failure for a specified time period? A
mature workflow requires systems that are
resilient to failure and provide uptime SLAs that
allow the business to depend on them.

Resilience
Do errors result in massive or minimal business
impact? Errors are inevitable in all complex
systems, and a mature workflow must anticipate
them, minimize their impact, and have
mechanisms to quickly remediate them.

The Analytics Development Life Cycle (ADLC) 06

Stakeholders of the ADLC
There are three primary personas of individuals
that participate in the ADLC:

The Engineer
The engineer creates reusable
data assets: pipelines, models,
metrics, etc. The engineer is
primarily focused on creating
data assets that others will use
to create business value.

The Analyst
The analyst performs analysis
that drives decision-making.
The analyst does not make
decisions; their role is
quantitative investigation,
and they present analysis and/
or recommendations to the
decision maker.

The Decision-Maker
The decision-maker is responsible
for taking quantitative outputs
and translating them into action
for the business. This does not
imply seniority: decision-makers
include everyone from a campaign
manager optimizing segmentation
to a CEO directing the resources of
an entire company.

Taken together, these three
personas cover every individual
at an organization who interacts
with data for the purpose of
analytics.

These personas are not job titles.
The ADLC does not require any
particular mapping between
personas and job titles; different
organizations can decide on
appropriate job descriptions
based on their own unique
organizational contexts. For
example, a single individual
could act as each of these
personas at a small startup, while
at large companies there may be
many job titles that fall along the
above continuum.

What is important to the ADLC is how these personas work
together. Specifically, the ADLC requires two things.

01 These personas must all collaborate together using a
common workflow: the ADLC. The ADLC is not just for
engineers and not just for analysts. It is a multi-persona
workflow wherein every knowledge worker in an organization
collaborates together.

These personas must all collaborate together within tooling
that empowers each of them to perform their assigned roles
according to the ADLC. This might seem obvious given the
above point, but in practice this is a major gap in the tooling
ecosystem today. While tooling for the engineer has made
significant progress over the past decade along its workflow
maturity, tooling for the analyst and the decision-maker
has largely not kept pace. We see this as one of the biggest
barriers to full adoption of the ADLC today.

02

The Analytics Development Life Cycle (ADLC) 07

The above three personas are
like hats data practitioners put
on and take off, not badges
we wear all day every day.
We have our primary hat, the
one we like wearing best. But
over the course of the day, as
we get pulled into solving real
problems, we need the flexibility
to put on different hats.

The most effective data
practitioners can wear all three
hats. And the best data tooling
enables as many people as
possible to wear all three hats.
Even with great tooling, you will
still have a hat you prefer. But
the ability to wear all of them as
the situation demands allows
you to complete a single end-
to-end task yourself, without
getting stuck behind someone
else’s queue.

The best organizations
encourage talented people to
flex between these different
personas. They allow them to
take an idea and get curious
about it, to explore it without
needing to file a ticket or wait for
anyone else.

This, in turn, requires tooling
that prioritizes both accessibility
and workflow maturity at the
same time. Rather than saying
“stay in your lane,” we should be
saying “here are tools that allow
you to get your job done in a
mature way.”

Hats, not badges
One of the failure modes
of an analytical practice is
excessive segregation by
persona. Because the ADLC is
fundamentally an integrated,
iterative process, segregating
tasks too strongly causes
friction and therefore slowness.

For instance, if an analyst has to go to an engineer to source new data,
that engineer will likely put a ticket in their queue, then prioritize it,
then eventually get to it. This can inject weeks into a process that could
otherwise take minutes.

While the ADLC recognizes these three personas—the engineer, the
analyst, and the decision-maker—it also encourages us not to see
these personas as static.

For example:
Analysts get pulled
into engineering
work to unblock
themselves and
move faster.

Decision-makers get
pulled into analytical
work to drill into any
analysis provided
and ask follow-up
questions.

Many jobs are analyst
/ decision-maker
hybrids, where the
same person is
both analyzing and
decisioning on data.

The Analytics Development Life Cycle (ADLC) 08

The ADLC Model
We propose a simple, straightforward model for the Analytics
Development Lifecycle (ADLC). This model governs changes to,
maintenance of, and use of any analytical system.

The ADLC is heavily informed by a single guiding principle:
analytical systems are software systems. Therefore, in developing
large-scale, mission-critical data systems, many of the best lessons
that can be learned come directly from software engineering.
As such, the ADLC borrows very intentionally from the software
development lifecycle (SDLC). There is no one single canonical
version of the SDLC, but here is a common visual depiction.

Next, we will examine each of
these phases. Before diving in,
it is important to set realistic
expectations. There have been
many books written about each
one of these stages in the SDLC.
Entire books just about writing
code, just about operating
production systems, etc. This
paper will not even come close
to a partial treatment on any
of these topics; our goal here
is to outline the framework as
a jumping off point for further
work, writing, and community
contribution.

As in the SDLC, the relationship between these
stages is a loop. Here is how the stages logically
relate to one another:

Since its inception, the SDLC has
been broadly adopted globally
and across industries—it is widely
understood and battle-tested.
As such, it is a good framework
from which to draw upon. In
the following sections, we will
propose a model for the ADLC that
borrows heavily from the SDLC.

The ADLC is not relevant only to a single part of an analytical system:
it is relevant to the entire system, from ingesting data to transforming
it to analyzing it to building applications on top of it. This paper takes
care to describe the work being done as creating analytical ‘assets’ or
‘artifacts’—these can be pipelines, models, dashboards, notebooks, or
any other object that creates, moves, processes, or analyzes data.

In this model, there are eight discrete stages:
Plan, Develop, Test, Deploy, Operate, Observe, Discover, Analyze

The Analytics Development Life Cycle (ADLC) 09

Plan
Analytical systems collect data from and build
models of the real world, and the real world
changes constantly. As a result, changes to
analytical systems are constant. The Plan phase is
the beginning of the process of making changes to
an analytical system.

There is no one-size-fits-all approach to the Plan
phase. Changes to an analytical system come from
many different places. New business requirements.
Issues identified in production. Refactoring. Some
changes may be tiny and some may be huge.

The larger the change, the more critical it is to run
through a thorough planning process.

Best practices include:
Create and validate the business case
All changes to an analytical system should be
based on a solid business case, and often clarifying,
documenting, and aligning on that business case
is both the most important step in the process and
yet the most often skipped. Have a clear process by
which changes above a certain threshold must go
through before getting worked on.

Create your implementation plan
Determine what shared functionality can be
referenced or extended, whether from the
community or from others in your org. Extending
existing assets can require more up-front effort
(because of the testing and coordination required)
but over the long term, maintaining multiple similar
copies of assets creates a huge drag on a system.
Keep your code DRY.

Get stakeholder feedback
Check back in with the stakeholders identified when
building the business case to get their comments
and buy-in for your proposed approach. Missing this
feedback cycle can lead to a lack of alignment and
wasted time and effort.

Create a test plan
Before writing a line of code, answer how you will
assert that the code you wrote is functioning as
intended. What use cases does it need to handle?
What problems does it need to be robust to?

Anticipate downstream impacts
If changing an existing asset, identify the
downstream consumers of that asset (other assets
and other humans). Develop a plan for how to
make changes in a non-disruptive way, including
testing downstream assets. Create a deprecation
plan for older functionality being replaced that will
introduce breaking changes.

Plan for maintenance
Historically, most analytical assets were temporary,
throwaway. A single spreadsheet attached to an
email, ready to be replaced by a new copy next
week, disconnected from any larger system. This is
not how mature analytical systems are built today.
Today’s analytical systems are interconnected and
long-lived, just like software systems.

And as in software systems, most of the work
involved is in the maintenance phase, not in the
initial development phase. So, prior to starting the
work, make sure to plan for maintenance.

Who should be maintaining the changes you are
making over the long term? Are you changing an asset
that you built originally? That someone else built?
That is owned by your team or another team? Etc.

Determine access levels
What teams and individuals should have access to
the work? Is there personal identifiable information
(PII) or sensitive personal information (SPI) in the
data that you are working with and how does it
need to be handled?

Implement larger changes in small pieces
Divide up larger work into smaller units that can
be taken through the development process and
merged independently. The ADLC is iterative: faster,
smaller iteration cycles tend to produce healthier
analytical practices.

The Analytics Development Life Cycle (ADLC) 10

Develop
The Develop phase is what gets most of the attention
in the ADLC, but it is actually overrepresented
relative to the amount of time spent in this phase. In
practice, with a high-quality Plan phase, the Develop
phase should move fairly quickly for an experienced
practitioner. It is focused on translating the knowledge
you gathered in the Plan phase into code.

Best practices include:
Code first
Whatever type of analytical asset is being built, and
whatever persona is building it, the tool you use should
read and write human-readable code. Code doesn’t
have to be the user interface, but it does have to be the
underlying representation of all business logic in order
to live up to the ADLC. This is for the following reasons:

 • Code can be edited by multiple tools, used by
 multiple personas.
 • Code can be checked into source control systems
 that enable mature collaboration across
 thousands of co-contributors.
 • Code can go through the CI/CD process.
 • Code, as language, is composable and therefore
 maximally expressive.

Choose & customize your own development workflow
There is no ‘correct’ development workflow or
toolset. You can use emacs or vim, CLI or IDE, a
graphical user interface or an AI copilot, and you can
switch between these different modalities as the
situation demands. You are the best judge of how
you are maximally effective. What is critical is that
your analytical system supports contributing code in
multiple modalities as suitable for multiple personas.

Highly productive developers not only choose the
tools that best suit them, they customize them,
sometimes extensively. This includes everything from
hotkeys to color schemes to macros and plugins.
The difference between developer productivity
within a ‘vanilla’ development environment and a
development environment that has been tuned to
your specific workflow can be dramatic.

Adhere to a style guide
Many choices made when writing code are stylistic:
capitalization, indentation, etc. While there often is no
‘correct’ answer on these topics, it is important that
they are done consistently across a code base. Create
a style guide to define this consistency and then
invest the time to follow it—doing so will improve the
productivity of every single developer that interacts
with your code base.

Prioritize functionality over performance
Your initial job is to write code that meets your
functional requirements. Once you do that, you can
prioritize performance as much as is appropriate.

Invest in code quality
Most of the time spent in any given analytical
system is on its maintenance, not on its original
development. Set up yourself and others for success:
write good code. This does not just mean following
the style guide. It means:

 • writing code that is idiomatic to the language
 you are using
 • applying common design patterns
 • using descriptive names
 • prioritizing readability
 • writing in-line comments and supporting
 documentation
 • keeping code DRY
 • designing for reusability
 • …and many other best practices

Get code reviewed
No code should get merged into production without a
second set of eyes on it. Invest in code review in your
organization and make sure the process is rigorous
and consistent. Make sure peers are incentivized
and organized in a way that enables them to review
others’ work.

Use standards to avoid lock-in
Writing code in proprietary languages risks vendor
lock-in. Using open languages (such as SQL and
Python) and frameworks (such as Apache Spark and
dbt) that are open is highly preferable. Code bases
live for a long time—often far longer than the lifetime
of any one single product or vendor.

The Analytics Development Life Cycle (ADLC) 11

Test
The Test phase is an absolutely
essential part of the ADLC. This is
one of the areas in which imma-
ture analytics workflows often fall
furthest from the mark.
We believe that no production analytical artifact
should exist without tests. In practice, the data
pipeline space has made significant progress
in testing over the past decade, but it is still
quite uncommon to see well-tested notebooks
and dashboards. This represents a significant
opportunity for increased maturity in the current
ecosystem.

The Test phase falls immediately after the Develop
phase and refers to testing changes before they
are merged into production. Data is also tested on
an ongoing basis in the production environment,
but the ADLC considers this the Observe phase.
Of course, implementing good tests when writing
code typically forms the backbone of effective
observability.

The Test phase spans two distinct workflows:

There are three types of tests that should be
implemented:

Unit tests test only the logic being implemented,
not the underlying data, and not the system as a
whole (“Will this model do what I expect it to do?”)

Data tests test the logic being implemented plus
the underlying data (“Does the data conform to my
expectations?”)

Integration tests test the system as a whole (“Do
my changes break any other parts of the system?”)

As in software engineering, writing tests is not hard
(with appropriate tooling), but it can be painstaking.
But a well-tested codebase significantly reduces
the maintenance burden of an analytical system as
errors can be quickly traced to their source. Testing
is as much about culture, shared expectations, and
accountability as it is about tooling or technique.
The desire to skip writing good tests and move
on to the next task is always present and must be
balanced via accountability mechanisms like code
reviews, linting, and test coverage metrics.

In software engineering, there are advocates for
different testing methodologies, such as test-
driven development. The ADLC does not specify
a particular testing methodology, only that no
production analytical asset should exist without
tests.

It is common and appropriate for developers to
focus on testing their own code during development
and then running the entire test suite during CI.

01
02

Iteratively, interspersed with development.

Automatically, as a part of the pull request
process. This is known as continuous
integration (CI). Changes should never get
merged into production without CI.

The Analytics Development Life Cycle (ADLC) 12

Deploy
The Deploy phase is where code
is migrated from development
to production. This can be a
fairly straightforward single hop,
or it can be more complicated
depending on the needs of the
system. All deployment processes
should have a set of common
characteristics:
Deployment is triggered based on a merge in
source control.
As source control stores the state of the repository,
branches represent the state of environments. Be-
fore deploying code to any environment, that code
must be merged to the appropriate branch. The
deployment then is made directly from that branch.

Deployment is automated.
There are no human steps required, beyond the act
of merging code to a new branch, to deploy changes
to a new environment. Sometimes this is straight-
forward; sometimes this requires work to create
migration tooling to enable.

Deployment does not cause user-facing
downtime.
Mature analytical systems are constructed in a way
to not impact users during deployments.

Rollbacks are automated.
Rollbacks are not only possible, but are automated.
Deployments will inevitably surface errors despite
robust testing, and mature analytical systems need
to plan for this outcome by having a rollback strate-
gy. The best rollback strategy includes smoke tests
and automated rollbacks.

Developers choose the size of the change.
Developers can choose to deploy a one-line change
or a massive refactor to the entire system. The ana-
lytical system must not constrain the way in which
they structure their patches.

The Analytics Development Life Cycle (ADLC) 13

Operate & Observe
Every analytical system has a production environ-
ment, and every organization has certain require-
ments for its production analytical environment:
uptime, latency, throughput, correctness, etc. In
the Operate and Observe phase we are not making
changes to the system; having deployed and validat-
ed changes in the prior phase, we are now operating
it in steady state and observing its characteristics to
validate that it is conforming to expectations.

Best practices include:
Always-on
In the past, analytical systems were frequently un-
available for significant chunks of the day as new data
was loaded or jobs were processed. This is no longer
acceptable—analytical systems’ production environ-
ments should be assumed to be available 24x7x365,
with modest windows for planned maintenance.

Tolerate and recover from failure
Your analytical system, with its thousands of models
and dashboards and notebooks and sources, each
containing thousands to billions of rows, will never
be without errors. The goal is to be robust to these
errors, not prevent them entirely. Build analytical
assets that can recover from failure quickly and with
minimal manual intervention.

Catch errors before customers do
Given that any mature analytical system will always
contain errors, two of the most important metrics
to measure are time to detect an error and time to
resolve an error. The goal of error detection and
remediation is to identify and resolve errors before
your customers see them.

This bar is very rarely hit inside of organizations
today. Doing so requires mature processes around
incident identification, triaging, and resolution, high
quality instrumentation, clear component owner-
ship, and around-the-clock on-call rotations.

Test in production
From increment.com: “Once you deploy, you aren’t
testing code anymore, you’re testing systems—com-
plex systems made up of users, code, environment,
infrastructure, and a point in time. These systems
have unpredictable interactions, lack any sane
ordering, and develop emergent properties which
perpetually and eternally defy your ability to deter-
ministically test.”

Said another way, most of the bugs you find are not
“errors,” they are a mismatch between your busi-
ness logic and the real world. You can never fully
anticipate the real world in your test environment,
so you inevitably need to test in prod. This requires
both excellent instrumentation and tooling that
allows you to explore this instrumentation data in
real-time.

Choose your own metrics, and then measure
them religiously
There are many metrics to choose from in the liter-
ature on observability: availability, uptime, latency,
throughput, etc. These metrics are all in tension
with one another, and there is no universal answer
to how these tradeoffs should be managed. Every
organization needs to understand these metrics,
set their relative priorities, and set goals around the
ones that matter. Missing those goals should gener-
ate action.

Don’t overshoot
Every additional 9 on your SLAs costs an order of
magnitude of additional effort/resources to deliv-
er. Assess the real business value of your system’s
characteristics and aim to deliver what is actually
required.

The Analytics Development Life Cycle (ADLC) 14

Discover & Analyze
The Discover and Analyze phase includes two
distinct but intertwined user flows: discovery of
existing data artifacts (data sets, dashboards,
metrics, etc.) and using those data assets to answer
questions. This phase is where business value is
ultimately created. Reports and dashboards are
created and viewed. Exploratory data analysis
is conducted. Hypotheses are tested. Causal
relationships are investigated. Predictions are
made.

We find that this phase of the
ADLC is, in practice, often relatively
immature today.
Every analytical question starts as research. An
analyst sets out with a question about the business
and looks for data to bring to bear on it. The analyst
finds some data, hacks together some code or
scripts or whatever to do some sanity checks, and
eventually starts to be convinced that there’s signal
in the data.

At that point, the analyst gradually starts to flip
from a mindset of “I need to convince myself” to “I
need to convince others.” At this point, the analyst
anticipates a bunch of follow-on questions that
might disconfirm their earlier conclusions and then
proactively answers those.

Assuming their initial conclusion stands up to
this effort at disconfirmation, they eventually
switch from “I need to convince others” to “I need
to memorialize this insight.” At this point, they
consolidate all the analytical artifacts that they
have built to get them to this point, clean them,
document them, and ship them. At that point, those
become long-lived artifacts of the analytical system
of an organization.

This, then, is the core tension in
the Discover and Analyze phase:

the same set of tools that
promotes experimentation
and exploration must then
also support maturity and
productionization.
In practice, most tooling in the presentation layer
does not enable this, and as a result this layer of the
analytical system often completely skips the ADLC.
This results in final products (reports, dashboards,
notebooks, etc.) that are low-maturity, even if they
are built on top of mature datasets.

Errors can get introduced at any layer of the
analytical system, and the presentation layer is
no exception. Presentation layer artifacts must
go through the full ADLC before they become
load-bearing in an organization. The process of
productionizing a dashboard should be thought
of as no less critical than, and fundamentally no
different than productionizing a data pipeline.

This is why the ADLC is a loop. As the analyst moves
from exploratory data analysis to memorializing
an insight for a wider audience, they shift from the
Discover and Analyze phase to the Plan and Develop
phase, and thus through another iteration of the
entire process.

The Analytics Development Life Cycle (ADLC) 15

Requirements of the
Discover & Analyze Phase
Beyond the above, the ADLC does not believe
that there is a ‘right’ or a ‘wrong’ way to conduct
exploratory data analysis. Rather, it specifies a set
of requirements that all users should have of their
analytical systems in the Discover and Analyze phase:

Users should be able to discover the artifacts
from a mature analytical system directly,
through a single search bar, without having
to go through any intermediary gatekeepers.

Users should always be able to operate on
data where they find it, without passing it
from person to person in informal networks
or ever downloading it locally.

Users should be able to leave feedback on any
element of a mature analytical system. This
feedback should both lead to better discovery
as well as fed back into the Plan phase.

Users should be able to straightforwardly
request the access that they need from a
mature analytical system to get their jobs done.

Users should be able to delegate their own
access to a mature analytical system to their
chosen tools and agents.

Users should be able to straightforwardly
validate the correctness and timeliness
of data from a mature analytical system.

Users should be able to straightforwardly
investigate the provenance of any data
element in a mature analytical system.

Users should be able to view a history of all
state changes to a mature analytical system.

Users should be able to choose the
environment of a mature analytical system
they interact with: dev, staging, prod, etc.

Finally, users should be able to ignore the
implementation details of a mature analytical
system. The system should just work without
these users needing to know all of the underlying
technical details of how it works.

The Analytics Development Life Cycle (ADLC) 16

Our goal in publishing this paper is to create
a consistent, shared framework for a mature
analytics workflow: the ADLC.

Many parts of this framework can be implemented
today. Some require better tooling to effectively
implement‌ them. As such, the effort of building
towards a mature analytics practice requires the
entire industry—data practitioners and technology
vendors—working together towards a shared vision
of the future.

This process will not play out overnight. Software
engineering has only reached its current state of
relative maturity after many decades of progress. It
will take just as long in data.

As an industry, we are immature in so many ways,
and this paper only attempts to lay out, in the
broadest of strokes, the path towards a solution.
What is required now is to collectively roll up our
sleeves and push the conversation forward in every
single arena.

We look forward to doing that
work right alongside you.

Conclusion

018

ADLC is the new playbook for data.
Learn more about analytics engineering best

practices at getdbt.com/blog

