
A guide to  
data mesh

01

Table of Contents

Introduction: A guide to data mesh

Why we need data mesh

Slowdowns and silos in the data monolith

Principle 2: Data products

Principle 3: Self-service data platform

Principle 4: Federated computational governance

Implementation: Data products

Implementation: Self-service data platform

Implementation: Federated computational governance

Principle 1: Domian-oriented data

Implementing the four principles of data mesh

Complex and brittle systems

What is data mesh?

Implementation: Domian-oriented data

Conclusion

01This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

02This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Introduction

A guide to
data mesh

There are many parallels between data

analytics workflows and software

engineering processes. Both have had to find

ways to deal with mounting scale and

complexity, larger networks of collaborators,

and more expectations as their crafts have

matured.

Software engineering has dealt with this

complexity by discouraging hero mentality

and embracing a services-oriented

approach. Many in the industry realized that

creating monolithic applications with

massive teams was a recipe for increased

costs and decreased quality. As a result,

companies focused on creating small teams

building well-defined components in a

service-oriented architecture.

But the same thing hasn’t happened with

data. Data analytics, for the most part, still

centers on creating monolithic stores

managed by single data engineering teams.

This results in overworked teams, shipping

delays, and a decline in data quality.

How do we bring the hard-won lessons of

software engineering into the data realm? In

this eBook, we take an in-depth look at how

a data mesh architecture turns the

monolithic paradigm on its head—and helps

you deliver data-driven projects more

quickly at higher reliability in the process.

We’ll cover:s

n Why we need data mesg

n The four principles of data meshs

n How to use the four principles of data

mesh to build your own mesh

architecture

03This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Slowdowns and silos in the data monolith

The architectural choice to use a data monolith has numerous
knock-on effects. Monolithic approaches break down a data
processing pipeline into several stages—ingestion, processing,
and serving.

A single team often handles all of these stages. This approach
can work at first but breaks down with scale. As more and
more requests come in, the data engineering team finds itself
unable to respond to them promptly. This leads to an ever-
growing backlog of feature requests and bug fixes. This slows
down the pace of innovation and also leads to the system
becoming more brittle over time.

In this approach, data engineering teams often can’t gain the
full context behind the underlying data in this model. Since
they’re responsible for maintaining data sets from multiple
disparate teams, they often don’t fully understand the
business rationale behind the data.

This can lead them to make uninformed—and, sometimes,
harmful—decisions that impact business decision-making. For
example, a data engineering team may format data in a way
that the sales department doesn’t expect. This can lead to
broken reports or even lost data.

Why we need data mesh

Read dbt Labs CEO Tristan Handy’s  
The next big step forward for analytics engineering

Complex and brittle systems

Monolithic systems rarely have clear contracts or boundaries.
This means that data formatting changes upstream can break
an untold number of downstream consumers. The result? This
can cause teams to avoid making necessary changes for fear of
breaking everything. This leads to monolithic systems
gradually becoming outdated, brittle, and hard to maintain.

Finally, as dbt Labs CEO and Founder Tristan Handy notes,
collaboration also becomes more difficult in a monolithic
system. Since no one is familiar with the entire codebase, it
takes more people and more time to complete data-related
tasks. This affects time to market for new products and
features—which impacts the company’s bottom line.

https://www.getdbt.com/blog/analytics-engineering-next-step-forwards

04This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

What is data mesh?

A data mesh is a decentralized data management architecture
comprising domain-specific data. Instead of having a single
centralized data platform, teams own the processes around
their own data.

In a data mesh framework, teams own not only their own data,
but also the data pipelines and processes associated with
transforming it. A central data engineering team maintains
both key data sets and a suite of self-service tools to enable
individual data ownership. Domain-specific data teams then
exchange data via well-defined and versioned contracts. A
semantic layer ensures organizations can centrally define
business metrics so they are universally consistent by every
user and team.

Data mesh architecture aims to solve the lingering issues in
data systems by adopting the same approach to data systems
that software engineering teams take to software systems. It
does so by enacting the following four principlesM
` Domain-oriented datk
` Data as a producn
` Self-service data product]
` Federated computational governance

Let’s look at each of these principles in depth.

Architecture for Data Mesh

Domain 1

Domain 2

Data Product 1

Semantic Layer

Data Product 2

Data Product 3

Domain 3

Platform Services

Storage Compute Ingestion Framework Transformation

Orchestration CI Catalog Access Control

Data

Contracts

05This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

In the absence of clearly demarcated data domains, many
organizations use a single, central data team to store corporate
data. That team “owns” the data from a technical standpoint.
Any changes to its structure or format require that business
owners file change requests with the engineering team.

This model works for many companies…up to a point. Over
time, these large, monolithic data structures become overly
complex and harder to navigate.

The single-team approach also doesn’t scale well. As more and
more requests come in, the data engineering team becomes a
bottleneck and falls further and further behind.

Data domains address this by parceling out data schemas into
self-contained definitions owned and maintained by the
business team that owns the data. The team owns the data
storage and all processes—generation, collection, data
pipeline transformations, APIs, reporting—that accompany it.
Its output is a data product—a data container or a unit of data
that directly solves a customer or business problem.

You can think of a data domain as a "service-oriented
architecture" for data. Each data domain team is responsible
for maintaining its data boundaries and the operations that
support them.

Principle 1: Domain-oriented data

In data mesh, a data domain is a logical grouping of data, often
source-aligned or consumer-aligned, along with all of the
operations that its objects support.

The diagram below shows an example of how data domains
might function in practice. The domains themselves can be

loosely categorized into whether they are source-aligned,
customer-aligned, or aggregates of data. Each domain itself is
aligned not with a set of technologies, but with the part of the
business that it supports.

Marketing Management support Controlling support

Funnel

analytics KPIs & Dashboard

Recommendations

ML Model

CRM

360° Customer

Profitability

reporting

Product search Article details Checkout

Search

Queries Article

Fulfillment

Shipment

Payment

Invoice
Customer

Order

Consumer-aligned

Source-aligned

Aggregate

Data Domains

Source: www.datamesh-architecture.com

https://www.datamesh-architecture.com/

06This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Principle 2: Data products

A data product is a data container or a unit of data that directly
solves a customer or business problem.

As a deliverable, a data product can be as simple as a report or
as complex as a new Machine Learning model. Data products
will also contain any metadata required for consumption, such
as API contracts and documentation.

Data products have a core set of attributes that set them apart
from bare-bones data. A data product should be:n

T Discoverable
T Addressable
T Trustworthy and truthfu`
T Self-describingn
T Interoperable
T Secure and governed

Discoverable

A data product should be easy to find—e.g., via central
registration in a data catalog that tracks data products across
the company.

Discoverability solves the chronic problem of finding relevant,
high-quality data within a company. A survey by Coveo found
that employees spend up to 3.6 hours per day searching for
relevant information. The stats are even worse for IT
professionals, who spend 4.2 hours per day.

Improving data discoverability reduces or eliminates this
wasteful overhead and ensures that teams can start creating
new data products promptly. For example, a team that wants
to build a product recommendation engine could use
discoverability tools—such as dbt’s native documentation and
lineage functionality—to find where the organization keeps an
anonymized dataset of past customer orders. Once discovered,
they can request permission to the dataset, then create their
own data pipelines to transform it into the format they need.

Addressable

Addressable means that a data product has a unique, labeled
location from which data teams can retrieve the asset.

The addressing format will differ based on the asset. For a
database table, this may consist of a server name, port
number, and schema/table path. For data exported by a
partner, it might be a Parquet or CSV file stored in an Amazon

S3 bucket. The only requirements are that the address
uniquely identifies the asset and that it can be retrieved on
demand by anyone with the proper permissions.

Trustworthy and truthful

In one survey of 220 data governance professionals, 46% said
concern over data quality impedes use. Even if employees can
find data, they won’t use it if they can’t trust it.

Data products can help improve people’s confidence in data by
providing self-service answers to fundamental questions
about data:n

T Who owns the dataset?n
T How often is it updated (e.g., near-real-time, x times/day,

every 24 hours, weekly) and when was the last update?n
T What procedures do data owners take to cleanse and

validate data?n
T Has the data been tested?

Self-describing

A limitation of data without accompanying metadata is that it
can be difficult to figure out what it means or why it exists. By
contrast, data products provide mechanisms to describe the
data they make available, its format, and its intended business
purpose.

A dbt data model and a data model contract are good
examples of self-describing data. Models describe their data
and how it relates to other models in the company. A contract
specifies a set of constraints to which a data model adheres.

Interoperable

Data products within a company should be interoperable—i.e.,
provide mechanisms for working seamlessly with other data
products. Part of this work involves standardization of
concepts (e.g., “customer”, “product”) common to the
organization. Another part involves defining Application
Programming Interfaces (APIs) and data formats to enable
data exchange across teams and divisions.

Secure and governed

Finally, data products should leverage federated
computational governance to ensure security and
compliance.All data should be stored encrypted at rest and in
transit, and protected via a strong “zero-trust” permissions
model.

07This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Principle 3: Self-service data platform

A self-serve data platform is a data platform that supports
creating new data products without the need for custom
tooling or specialized knowledge. It’s the technical heart of
data mesh, enabling data domain teams to take ownership of
their data without unnecessary bottlenecks.

The self-serve data platform fulfills three critical functions:�
[e Support developing data products. In a data mesh

architecture, data domain teams take control of their data
and all related artifacts and processes. The end product of
their work is a data product—a self-contained unit of data
that directly solves a customer or business problem.�

�e In a data mesh approach, a centralized data platform team
creates the infrastructure and tooling that supports
creating data products. This ensures that each team is
creating data products in a uniform and consistent
mannere

We Enable data discovery. The distributed nature of data mesh
means there needs to be a systematic way for teams to
discover and use the data products that other teams have
developed. As part of the self-serve data platform, the data
platform team provides tools such as a data catalog for
registering, discovering, and enriching data products.

Institute data governance policies. Another potential challenge
with the distributed nature of data mesh is maintaining a
consistent quality bar across data domains. Without a way to
enforce data quality and compliance standards, a data mesh
can quickly turn into a data anarchy. To address this, the self-
serve data platform implements core support for federated
computational governance (discussed below).

Capabilities of a self-serve data platform

Basic data storage capabilities. If you have data, you need
some place to put it. A self-serve data platform administers
and provides secure access to storage in multiple forms—
RDBMS, NoSQL, object storage, data warehouses, data lakes. It
also standardizes transfer and storage protocols (e.g.,
encryption at rest and in transit).

Data product creation. The self-serve data platform also
offers all the tooling necessary to turn data storage into data
products. This can include:�

¶ A format for defining and testing model contracts, which
define the commitments the data domain team makes to
its consumers about the data it emitse

¶ A data transformation layer, such as dbt models, for
converting source data into the formats required by the
data domain teame

¶ Tools for orchestrating and running data pipeline jobs to
transform new, incoming data periodically.�

¶ Source control (i.e., Git support) for tracking changes to
contracts, transformations, and other project assetse

¶ Support for data caching, data access API creation, and
other related functionality.

Data discovery. The data catalog and accompanying data
lineage provide basic data discoverability capabilities. A data
catalog provides visibility into how data flows through the
entire company, which enables advanced data debugging
techniques such as root cause analysis and change impact
analysis.

Security and data governance. A self-serve data platform
must also provide methods for restricting data access to
authorized individuals. We go into more details around this
below, where we address federated computational
governance.

Reporting and monitoring. As part of its base-level support
for data products, the self-serve data platform should also
provide basic support for logging and monitoring (e.g.,
auditing data changes, logging access requests). It can also
provide useful statistics about data across the company,
including:�

¶ Which data assets are the most/least use«
¶ Metrics on overall data quality and corporate complianc»
¶ Alerts on important changes—e.g., alerting downstream

consumers of a data product when a new version of the
data contract has been publishe«

¶ Reporting on costs and usage of the platform

08This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Principle 4: Federated computational governance

So we have independent data domains using a self-serve data
platform to self-publish data products. The question arises:
How do you maintain consistency and oversight in such a
distributed, highly-scalable data network?

There are several reasons organizations need to exert some
measure of verification and oversight over the data that
domain teams manage:w

} Ensure data quality. Poor quality data -malformatted
dates, missing values, corrupt structured data, etc. - can
lead to poor decision-making and broken data pipelines.
According to some estimates, poor data quality costs
organizations up to $12.9 million a year.w

} Verify regulatory compliance. Regulations such as the
General Data Protection Regulation (GDPR), the Health
Insurance Portability & Accountability Act (HIPAA), and
many others worldwide specify strict rules around
handling consumer data—and stiff penalties for violating
them.w

} Simplify data interoperability. If different teams define
similar concepts in different ways, it can complicate
sharing data and building on one another’s work.
Companies that define standard data structures for
common concepts such as “customer” or “product” help
foster a data environment where interoperability is
painless.w

} Provide accountability and transparency. A clearly-
documented set of data governance policies defines the
rules every data product team must follow in an open and
auditable format. This minimizes the risk of errors and
intentional abuse.

This is where federated computational governance comes into
play. Each data domain team continues to own its data (plus
associated assets and processes). Each team is also required
to register its data products with one or more data governance
platforms. The data governance platforms, in turn, run
automated data governance policies that ensure all data
products conform to organizational standards for quality and
compliance.

Hallmarks of federated computational governance

Governance isn’t a new concept. Many of the tools used to
implement federated computational governance - data
catalogs and data governance platforms - pre-date the concept
of data mesh.

Federated computation governance in a data mesh is unique
in that it balances decentralized autonomy with global

interoperability. It combines the benefits of data mesh’s
scalable data model and local ownership with automated
implementation of policies and best practices. It accomplishes
this by being:

Distributed (federated). Federation frees data domain teams
up from the downsides of working with data monoliths and
gives them greater control over their own data and its
processes. But it does so without sacrificing oversight. Without
data governance software, each data domain risks becoming
its own data silo, enforcing (or, even worse, not enforcing) its
own data governance and quality rules.

Automated (computational). Federated computational
governance leverages data governance software to implement
data governance, security, compliance, data quality, and more
as code—e.g., as declarative policies, scripts, etc.

 This isn’t to say there are never human-verified quality
gates, checks, or inspections in a data mesh architecture.
However, most data governance and quality checks are
automated to achieve greater scalability and faster delivery
times for new data products.

 Data governance policies are written down in both
human- and machine-readable formats. That means they can
be checked in to Git and version-controlled, code reviewed,
tested, and read by others. This increases accountability,
transparency, and accuracy in the data governance process.

Scalable. Federation and automation mean that data projects
can scale faster. Automated policies can verify more data in a
shorter time than a human could through manual inspection.
They can also react to fast-changing data more quickly. This
helps establish confidence that a new data product is high
quality and fully compliant with all appropriate regulations,
which means it can ship faster.

 Automation can also increase scalability by performing
some data governance actions automatically. For example, if a
field is marked as sensitive, an automated process could use
data lineage information to propagate this sensitivity tag to all
of the data sources both upstream and downstream from the
field’s data store.

Community-focused. In many companies, compliance is often
perceived as red tape—an obstacle. When imposed from the
top-down with no transparency, it can generate resentment
and frustration.

 In a data mesh, federated computational governance is
more of a community function in which data engineering, data
governance, and data producers collaborate on data quality
and governance. Since policies are clearly set forth in code
kept under source control, teams can work together on
refining data governance policies to cover any unexpected
edge cases.

https://www.gartner.com/smarterwithgartner/how-to-improve-your-data-quality
https://www.gartner.com/smarterwithgartner/how-to-improve-your-data-quality
https://gdpr.eu/what-is-gdpr/
https://www.hhs.gov/hipaa/index.html
https://www.hhs.gov/hipaa/index.html
https://docs.getdbt.com/terms/data-lineage

09This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Implementation: Domain-oriented data

Initialize and develop the data domain

Teams requisition new data domains through the self-serve
data platform. This enables data domain teams to remain
focused on the domain-specific portions of their business
instead of reinventing the wheel regarding data management.
It also ensures consistent technical support and cross-team
data governance.

Design the data domain

When designing a data domain, domain teams need to answer
a few fundamental questions:c

Y Where are we sourcing our data?c
Y What does our data schema look like?c
Y What transformations must we apply to our source data to

work with it efficiently?c
Y How do other teams access our data?c
Y Who has what rights to which data sets?c
Y Which data should be public and which data should be

internal to our team?c
Y Which data needs to be tagged as sensitive—e.g.,

Personally Identifiable Information (PII)?

Before shifting to a data domain framework, companies
should settle on tools and conventions for codifying these
design decisions. These tools should be a standard part of a
self-service data infrastructure.

dbt data models and model contracts are examples of tools
you can use here. dbt models use simple SQL or Python
models to define how to transform data between source and
destination formats. You can also define data access rules
through simple declarative YAML markup. Model contracts
further define the conditions that the domain team guarantees
to its external consumers that its data fulfills.

Registering the components of a data domain

As part of a self-service data infrastructure, the centralized
platform team will also offer a method for registering new data
products, their sources, contracts, and their outputs from a
data domain. Registration�

Y Enables other teams to find a data domain team’s data
products and use them in their own data product§

Y Identifies the owners of a data domain so that other teams
can easily find and work with themc

Y Enables securing and classifying all data in a company to
ensure compliance with industry standards and legal
regulations

Registration is usually managed by a data catalog, which
tracks and manages all of the data in a company’s data estate.
The data domain team ensures that its assets—data sources
and destinations, models, contracts, APIs, data products—are
registered in the data catalog. The team is also responsible for
tagging all of its data appropriately for compliance and for
adhering to corporate standards around data quality.

Manage and revise the data domain

Data domain teams publish their data products with
accompanying contracts. At a minimum, contracts specify an
owner, a version, a description of the data that the product
exposes, and the conditions that data meets (e.g., field is non-
null, is maximum x characters long, contains a specially-
formatted string).

Because data domain teams are small and lean, they can work
agilely and release new versions of their data products
iteratively. Teams can publish new versions of their contracts
to the data catalog, which in turn will notify downstream
teams that an update is available.

Implementing the four principles of data mesh
How do you implement these four principles to create a data
mesh architecture? Follow the guidelines below to get your
company thinking about how to embark on this new approach
to managing data.

https://docs.getdbt.com/docs/build/models
https://docs.getdbt.com/docs/collaborate/govern/model-contracts
https://docs.getdbt.com/terms/data-catalog

10This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Implementation: Data products

Design the data product

Architecturally speaking, a data product consists of several
components. The most important of these are the data
specification and data contract.

Data specifications are one or more human- and machine-
readable documents that define the format of data, data
definitions, access policies, and data transformations.

Data contracts are guarantees of behavior for a given version
of the data product. You can think of them like APIs in a
service-oriented software architecture.

Contracts guarantee that the data product’s output for that
version will always return consistent results. That’s because a
contract is a machine-readable specification that can be used
for testing and verification. For example, a centralized quality
management system (e.g., a data catalog) can run a contract
against a portion of a data domain team’s data when it
submits a new data product.

Other assets that comprise the data product include:

Tests: Code that verifies the validity of your models against
representative data.

Version control: Leverage git to check in and track changes to
data definitions, contracts, and data pipeline code. This serves
to document changes and enable rollback to previous versions
when required.

Data storage: Object file storage, RDMBS/NoSQL database
tables, data warehouses, date lakes, etc. to hold raw and
transformed data.

Orchestration pipeline: Computing processes that transform
data, run tests, and deploy changes to one or more
environments.

Additional deliverables: Any additional artifacts that comprise
the data product, such as reports and metrics.

Provision, develop, and register the data product.

Once provisioned via the self-serve data platform, the data
domain team develops the models, permissions, tests, ELT
processes, reports, and other deliverables that comprise its
data product.

After extensive testing, the team publishes its initial version to
the data catalog. The registration includes information such as
the data model, the current contract specification, the address
of the data product, and any additional metadata required by
the registry.

Revise the data product

After registration, the data domain team resolves any security
and compliance issues detected by the registry. From there,
other teams can discover and use the data product in their
workflows.

When the data team needs to introduce a breaking change, it
creates a new contract with a new version and publishes it to
the registry. It also provides an “end of life” date for obsoleting
the previous contract. The registry can use data lineage
information to inform owners of downstream data products of
the upcoming change

Implementation: Self-serve data platform

The good news is, you’re probably already running some of the
technological components—data warehouses, data catalogs,
transformation tools, pipelines—that the new system will
need. Beyond technology, however, you’ll also need to
determine how to structure your data and how different data
domain teams will interface with each other.

Here are some general guidelines to get you started.

Obtain executive buy-in

A self-serve data platform isn’t a minor undertaking. It’ll
require a significant, ongoing investment in data platform
engineering resources.

The first step is creating a business plan showing how the
platform will deliver a return on investment. You can calculate
this by contrasting the estimated cost of the new system in
terms of time, labor, and licensing with revenue and cost-
saving factors such as7
= The business value of the data projects that the new

approach will unbloc<
= The reduction in time/resources spent debugging data

quality issueI
= The reduction in redundant infrastructure effort and

associated licensing costs

11This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

Implementation: Federated computational governance

s Data governance policy software. This is the toolset that
interprets and runs automated policies on your data. It
may be a built-in part of your data catalog or an extension
of it.�

s Access control framework. The platform will also specify a
set of role-based rules for who can access what data,
particularly data marked as sensitive—e.g., a user’s
Personally Identifiable Information, or PII. This may use
one or more security mechanisms, including Microsoft
Active Directory, OAuth, SAML-based identity frameworks,
Amazon Web Services (IAM) Identity & Access Management
(IAM), and others.

Design and implement data governance policies and access
controls

The data governance and data engineering teams work
together to define the policies that will govern all data in the
organization. These become the rules to which all data domain
teams must adhere when they publish new data products. The
data engineering teams build these into the self-serve data
platform as automations that run against the data described in
the data catalog.

As with the other components of a data mesh, federated
computational governance isn’t a one-and-done project. It’s
an ongoing effort involving trial-and-error that grows in both
scope and quality with each iteration. It’s also one that grows
in tandem with the other components of your overall data
mesh architecture.

Build data governance into the self-serve data platform

Federated computational governance is a critical part of the
self-serve data platform. The platform usually provides all or
most of the components below to support federated
computational governance:�

s Data catalog. A data catalog acts as a single source of
truth for all data within a company. It stores information
such as a data’s sources, its metadata, and data lineage
(the relationship between a data asset, its producers, and
its consumers). It enables easy discovery of data,
enrichment of metadata, and tagging and classification of
sensitive information¦

s Data transformation tools. A data mesh often also
provides support for a data transformation layer. Data
transformation tools, such as dbt Cloud, can act as a
common intermediary layer for all of the data stores in
your modern data stack. In particular, dbt Cloud provides
support for data governance via data lineage generation,
rich documentation and metadata support, tests, model
contracts, and model versions.

Create first cut of self-serve data platform architecture

Identify the technology you currently have to support a self-
serve data platform, as well as any gaps (e.g., data contract
authoring/validation tools). Design a rollout plan for the new
platform that introduces key features over subsequent version
releases. The platform itself is a product with releases,
roadmaps, SLAs etc.

For example, your initial release might contain the minimum
features required to support self-service for new data products
built on top of your data warehouse. This may include scoping
permissions correctly for each team to access the storage and
existing data they need, and providing a data catalog for all
teams to discover and view data contracts for other teams’
data products.

Onboard first key team and iterate

When you’re ready, onboard your first key team to the new
platform. It’s important to move slowly and onboard a single
team at a time. This enables you to vet your initial
assumptions and make adjustments during onboarding. It also
gives you a quick win you can use to demonstrate the value of
the new systems to other stakeholders and senior leadership.

Once you’ve onboarded your first team, continue onboarding
additional teams while also iterating on the capabilities of the
self-serve data platform.

https://docs.getdbt.com/terms/dag
https://docs.getdbt.com/docs/collaborate/documentation
https://docs.getdbt.com/docs/build/tests
https://docs.getdbt.com/docs/collaborate/govern/model-contracts
https://docs.getdbt.com/docs/collaborate/govern/model-contracts
https://docs.getdbt.com/docs/collaborate/govern/model-versions

12This document was built by the team at dbt Labs. Copyright ©2024 dbt Labs. All rights reserved.

A company might implement numerous types of policies,
including/

, Security policies: who can access what data, both at a
tabular and columnar level.@

, Compliance and privacy policies: which field formats
indicate potentially sensitive data (e.g., address, national
ID number, birth date) and should be labeled as such.@

, Data quality policies: standards for the format of common
fields, such as dates, as well as standards for accuracy (e.g.,
decimal-point precision in financial values; use of common
measurement units), duplicate data, and freshness.@

, Interoperability policies: policies that define standard
representations for common data objects; policies
requiring the use of data contracts and other assets that
define data products and make it easier for one team to
leverage another team’s data&

, Documentation and metadata policies: which metadata
should accompany all data assets and how teams should
document assets to convey their business purpose and
proper usage.

Register for data governance monitoring and respond to
issues

With this framework in place, data domain teams register their
data, data contracts, and other assets (such as dbt projects)
with the data catalog. The central data governance policies
will run periodically on the team’s data looking for potential
compliance violations.

If the data governance platform detects a potential violation, it
can send a notification to the data owners on the data domain
team. One or more team members responsible for compliance
can navigate to a dashboard to see a list of all outstanding
issues, along with a due-by date for resolution. The
compliance point person can then work with their team to
deploy fixes for these issues that will be picked up in the next
scan.

Data domain teams may also have additional programmatic
requirements for compliance that they must meet. As an
example, a team may need to supply some method (e.g., a
REST endpoint) to help the company comply with right to
erasure requests under GDPR.

dbt Labs’ goal is to empower teams to work both
independently and collaboratively, without sacrificing security
or autonomy. That’s why we’re big believers in the data mesh
architecture.

dbt Mesh enables companies with complex transformation
workflows to increase their flexibility and performance. By
leveraging features built into dbt, you can manage any number
of dbt projects as separate workflows with defined contracts
and versions, cross-project data lineage, and granular security
and access controls.

To learn more, check out the documentation on dbt Mesh, and
talk to us about how you can use dbt Mesh to bring the
scalability and security of data mesh to your teams.

Conclusion

https://docs.getdbt.com/docs/build/projects
https://www.getdbt.com/contact/

